135 research outputs found

    The effects of dominance on leadership and energetic gain: a dynamic game between pairs of social foragers

    Get PDF
    Although social behaviour can bring many benefits to an individual, there are also costs that may be incurred whenever the members of a social group interact. The formation of dominance hierarchies could offer a means of reducing some of the costs of social interaction, but individuals within the hierarchy may end up paying differing costs dependent upon their position within the hierarchy. These differing interaction costs may therefore influence the behaviour of the group, as subordinate individuals may experience very different benefits and costs to dominants when the group is conducting a given behaviour. Here, a state-dependent dynamic game is described which considers a pair of social foragers where there is a set dominance relationship within the pair. The model considers the case where the subordinate member of the pair pays an interference cost when it and the dominant individual conduct specific pairs of behaviours together. The model demonstrates that if the subordinate individual pays these energetic costs when it interacts with the dominant individual, this has effects upon the behaviour of both subordinate and the dominant individuals. Including interaction costs increases the amount of foraging behaviour both individuals conduct, with the behaviour of the pair being driven by the subordinate individual. The subordinate will tend to be the lighter individual for longer periods of time when interaction costs are imposed. This supports earlier suggestions that lighter individuals should act as the decision-maker within the pair, giving leadership-like behaviours that are based upon energetic state. Pre-existing properties of individuals such as their dominance will be less important for determining which individual makes the decisions for the pair. This suggests that, even with strict behavioural hierarchies, identifying which individual is the dominant one is not sufficient for identifying which one is the leader

    Floral epidermal structure and flower orientation:Getting to grips with awkward flowers

    Get PDF

    Reporting of thermography parameters in biology: a systematic review of thermal imaging literature

    Get PDF
    This is the final version. Available from the Royal Society via the DOI in this record. Data accessibility: All data are available in the electronic supplementary material.Infrared (IR) thermography, where temperature measurements are made with IR cameras, has proven to be a very useful and widely used tool in biological science. Several thermography parameters are critical to the proper operation of thermal cameras and the accuracy of measurements, and these must usually be provided to the camera. Failure to account for these parameters may lead to less accurate measurements. Furthermore, the failure to provide information of parameter choices in reports may compromise appraisal of accuracy and replicate studies. In this review, we investigate how well biologists report thermography parameters. This is done through a systematic review of biological thermography literature that included articles published between years 2007 and 2017. We found that in primary biological thermography papers, which make some kind of quantitative temperature measurement, 48% fail to report values used for emissivity (an object's capacity to emit thermal radiation relative to a black body radiator), which is the minimum level of reporting that should take place. This finding highlights the need for life scientists to take into account and report key parameter information when carrying out thermography, in the future.Natural Environment Research Counci

    Approximating Optimal Behavioural Strategies Down to Rules-of-Thumb: Energy Reserve Changes in Pairs of Social Foragers

    Get PDF
    Functional explanations of behaviour often propose optimal strategies for organisms to follow. These ‘best’ strategies could be difficult to perform given biological constraints such as neural architecture and physiological constraints. Instead, simple heuristics or ‘rules-of-thumb’ that approximate these optimal strategies may instead be performed. From a modelling perspective, rules-of-thumb are also useful tools for considering how group behaviour is shaped by the behaviours of individuals. Using simple rules-of-thumb reduces the complexity of these models, but care needs to be taken to use rules that are biologically relevant. Here, we investigate the similarity between the outputs of a two-player dynamic foraging game (which generated optimal but complex solutions) and a computational simulation of the behaviours of the two members of a foraging pair, who instead followed a rule-of-thumb approximation of the game's output. The original game generated complex results, and we demonstrate here that the simulations following the much-simplified rules-of-thumb also generate complex results, suggesting that the rule-of-thumb was sufficient to make some of the model outcomes unpredictable. There was some agreement between both modelling techniques, but some differences arose – particularly when pair members were not identical in how they gained and lost energy. We argue that exploring how rules-of-thumb perform in comparison to their optimal counterparts is an important exercise for biologically validating the output of agent-based models of group behaviour

    Floral temperature patterns can function as floral guides

    Get PDF
    This is the final version. Available from Springer via the DOI in this record. Floral guides are signal patterns that lead pollinators to floral rewards after they have located the flower, and increase foraging efficiency and pollen transfer. Patterns of several floral signalling modalities, particularly colour patterns, have been identified as being able to function as floral guides. Floral temperature frequently shows patterns that can be used by bumblebees for locating and recognising the flower, but whether these temperature patterns can function as a floral guide has not been explored. Furthermore, how combined patterns (using multiple signalling modalities) affect floral guide function has only been investigated in a few modality combinations. We assessed how artificial flowers induce behaviours in bumblebees when rewards are indicated by unimodal temperature patterns, unimodal colour patterns or multimodal combinations of these. Bees visiting flowers with unimodal temperature patterns showed an increased probability of finding rewards and increased learning of reward location, compared to bees visiting flowers without patterns. However, flowers with contrasting unimodal colour patterns showed further guide-related behavioural changes in addition to these, such as reduced reward search times and attraction to the rewarding feeder without learning. This shows that temperature patterns alone can function as a floral guide, but with reduced efficiency. When temperature patterns were added to colour patterns, bees showed similar improvements in learning reward location and reducing their number of failed visits in addition to the responses seen to colour patterns. This demonstrates that temperature pattern guides can have beneficial effects on flower handling both when alone or alongside colour patterns.Natural Environment Research CouncilBiotechnology & Biological Sciences Research Counci

    Flower sharing and pollinator health: a behavioural perspective

    Get PDF
    This is the author accepted manuscript. The final version is available from the Royal Society via the DOI in this recordDisease is an integral part of any organisms’ life, and bees have evolved immune responses and a suite of hygienic behaviours to keep them at bay in the nest. It is now evident that flowers are another transmission hub for pathogens and parasites, raising questions about adaptations that help pollinating insects stay healthy while visiting hundreds of plants over their lifetime. Drawing on recent advances in our understanding of how bees of varying size, dietary specialisation and sociality differ in their foraging ranges, navigational strategies and floral resource preferences, we explore the behavioural mechanisms and strategies that may enable foraging bees to reduce disease exposure and transmission risks at flowers by partitioning overlapping resources in space and in time. By taking a novel behavioural perspective, we highlight the missing links between disease biology and the ecology of plant-pollinator relationships, critical for improving the understanding of disease transmission risks and the better design and management of habitat for pollinator conservation.Biotechnology & Biological Sciences Research Council (BBSRC)UKRIEuropean Regional Development Fund (ERDF
    corecore